
Integrate Work Frequently with Visual
Studio Team System 2008
White Paper

May 2008

For the latest information, please see www.microsoft.com/teamsystem

http://www.microsoft.com/teamsystem

This is a preliminary document and may be changed substantially
prior to final commercial release of the software described herein.

The information contained in this document represents the current
view of Microsoft Corporation on the issues discussed as of the date
of publication. Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a commitment on the
part of Microsoft, and Microsoft cannot guarantee the accuracy of
any information presented after the date of publication.

This white paper is for informational purposes only. MICROSOFT
MAKES NO WARRANTIES, EXPRESS, IMPLIED OR
STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of
the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into a retrieval
system, or transmitted in any form or by any means (electronic,
mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of Microsoft
Corporation.

Microsoft may have patents, patent applications, trademarks,
copyrights, or other intellectual property rights covering subject
matter in this document. Except as expressly provided in any written
license agreement from Microsoft, the furnishing of this document
does not give you any license to these patents, trademarks,
copyrights, or other intellectual property.

© 2008 Microsoft Corporation. All rights reserved.

Microsoft, Visual Studio and SQL Server are trademarks of the
Microsoft group of companies

All other trademarks are property of their respective owners.

Introduction .. 1

Compilation, Integration, and Deployment ... 2

Common Source of Pain ... 3

Version Control in Team Foundation Server .. 5

Team Build ... 8

Conclusion ... 14

About the Author ... 15

CONTENTS

 White Paper: Integrate Work Frequently with Visual Studio Team System 2008 1

Software development involves a feedback loop where code is written,

tested, deployed, and ultimately its correctness is communicated back to the

development team. The longer it takes for this feedback to reach the team,

the more difficult it is for the team to make necessary changes and the longer

it takes for new features and bug fixes to be completed. Microsoft
®
 Visual

Studio
®
 Team System 2008 offers several ways to shorten this feedback

loop, providing development teams with better information about the

correctness of their code, faster than ever before.

INTRODUCTION

 White Paper: Integrate Work Frequently with Visual Studio Team System 2008 2

Three areas in which many software development teams may have room for

improvement are compilation, integration, and deployment. Often the

difficulty of accomplishing these tasks in large projects results in developer

resources being dedicated to the task of ensuring the project can be built, or

ensuring disparate teams’ projects work correctly with one another. Often a

successful build or deployment cannot take place without the oversight of

these key individuals and their arcane knowledge of the steps required to pull

it off successfully.

Compilation of a .NET Framework based application involves running the

source code through a compiler, such as csc.exe or vbc.exe, in order to

produce an output assembly. Different kinds of .NET Framework based

projects require different compilation options, and the compilers have support

for dozens of different settings and variables. It can be challenging to

consistently compile (or build) a .NET Framework based project using the

exact same process and settings time after time during a project’s life cycle.

Integration of .NET Framework based applications refers to the process of

ensuring different projects are compatible with one another and can work

together cohesively. Very few software applications involve only a single

.NET assembly, and often changes made in one assembly (or in its build

process) can result in errors in dependent assemblies. These errors often do

not manifest during the compilation phase, and are only discovered during

integration.

Deployment of software built using the .NET Framework can involve many

different variables and tasks. At a minimum, it usually involves copying a set

of files and perhaps packaging them up into some kind of deployment or

installation package. Additionally it can include signing of assemblies,

updates to configuration files, packaging of data sources, and many other

tasks specific to each project. Complex deployment processes are often

prone to failure unless they are automated.

Team System addresses these issues with two important features: a robust

and scalable version control system and a powerful and flexible build server.

Combined, these two features help development teams to collaborate and

integrate with minimal friction and provide repeatable builds of the project in

an automated fashion.

COMPILATION,

INTEGRATION, AND

DEPLOYMENT

 White Paper: Integrate Work Frequently with Visual Studio Team System 2008 3

Small applications built by single developers are usually fairly simple to build

and deploy, and as a rule do not require any integration effort. However, the

moment a second developer joins the team, a host of issues arise that can

make all three of these tasks more painful, and it only gets worse as the

number of developers on the team continues to grow. Some common pain

points on larger development teams include (but are not limited to):

 Mismatched versions of sub-project libraries

 Incompatible configuration files between team members (or teams)

 Incompatible project or solution structures between team members

 Difficulties merging changes to files made by multiple team members

 Different folder structures and root paths and projects with
dependencies on expected file system resources

 Difficulty maintaining separate versions of code for past releases or
customer-specific versions

 As project dependencies grow, getting all of the files needed for a
successful build becomes increasingly difficult

 Larger projects can have complex deployment requirements

 And many more

Without any version control software, many of these issues can be extremely

difficult and time consuming to overcome. Further, the more difficult the tasks

of integrating, compiling, and deploying the project are, the less often they

will be attempted, resulting in fewer releases and a great lag between bugs

being found and fixes being released.

Limited Key Individuals Possess Necessary Knowledge

Because of the difficulty that can be involved in correctly deploying a build of

a large project, it is a common practice to dedicate one or more individuals

on the team to the task of integrating, compiling, and deploying the project.

The “Builder” must understand the file system and is often responsible for

dictating to the rest of the team how the file system will be organized for the

project. This individual must be able to access the required source code to

compile the project, resolving integration issues in the process. Finally, the

“Builder” must know how to deploy the project, usually with separate

processes for dev, QA, and release deployments.

While it makes sense to have one individual dedicated to the task and

responsible for knowing how to properly do it (rather than letting any

developer attempt a complex build process they do not fully understand), it

can be very expensive to devote one (or more) developer resources to this

task. It also presents an organizational “single point of failure” – what

happens when it’s time for a deployment and the “Builder” falls ill?

Each Build and Deployment is a Major Undertaking

In large projects, it is common for every build and deployment to be a major

undertaking whose success is uncertain. Often the “Builder” role emerges as

COMMON SOURCE OF

PAIN

 White Paper: Integrate Work Frequently with Visual Studio Team System 2008 4

a direct result of the increasing complexity of the build and deployment

process and the waning confidence the team has in its ability to successfully

build and deliver the project without some setback costing hours or days in

the process. Even with a dedicated “Builder” role, many large projects can

take hours or even days of the Builder’s time to build and deploy.

Quality Assurance Resources Idle

If producing a working application is a major undertaking, it won’t happen as

often as if it were simple or automatic. When quality assurance teams do not

have the latest version of the project to work with, they must either work with

often-obsolete versions of the project or sit idle waiting for the next good

build to test.

Difficult to Detect and Correct Regression Bugs

Regression bugs occur when enhancements or bug fixes made to one part of

an application result in new bugs elsewhere in the system. Regression bugs

are particularly common in tightly coupled systems that lack automated test

suites, and they are among the most annoying and difficult bugs to detect

and correct because they tend to occur in areas of the application that are

not being actively worked on, but which depend on areas that are under

construction.

 White Paper: Integrate Work Frequently with Visual Studio Team System 2008 5

Microsoft Visual Studio Team System 2008 Team Foundation Server

includes a full-featured version control system built on Microsoft SQL Server.

Team Foundation Server’s version control includes support for branching and

merging, check-in policies, work item association, shelving, workspaces,

changesets, and diffing/comparing. These features address many of the pain

points associated with software development in team environments.

Robust and Scalable

Built on Microsoft SQL Server™, a true enterprise RDBMS, Team

Foundation Server’s version control system is extremely robust and scalable.

Some version control systems use the file system for their data storage, and

as a result often encounter problems with file locking and corruption. By

using a true database for its storage, Team Foundation Server’s version

control avoids these issues while offering excellent reporting capabilities as

well.

Branching and Merging

Branching and merging refer to two sides of the same coin. Between them,

they enable developers to work in parallel on the same set of files without

risk of colliding with one another while work is in progress. When a team

needs to work on a common area of an application but does not wish to

impede progress for other teams, it branches the code to be worked on

(essentially creating a copy of the files in a separate location in source

control) and performs their updates. When the updates are complete, the

reverse process, merging, takes their changes and reincorporates them into

the main source tree in source control.

Another common scenario for branching is to create a separate branch for

separate shipping versions of the product. This enables new work to be done

on the next version of the application, while bug fixes can be applied to

previous versions of the application. Without branching the previous version,

any bug fixes made would only be part of the latest version of the application,

since new features (complete or in progress) would likely already exist in the

code.

See Microsoft Team Foundation Server Branching Guidance for more

information on how to use branching and merging effectively.

Check-in Policies and Work Item Association

Team Foundation Server’s version control provides support for check-in

policies, which require developers to follow certain steps when checking

code back into source control. Some common policies include requiring the

developer to provide some comments about what was changed, or requiring

that all check-ins be associated with a work item. Work items describe bugs,

features, tasks, and other units of work in the system, and can be directly

associated with individual check-ins, making it easy during a code review to

VERSION CONTROL IN

TEAM FOUNDATION

SERVER

http://www.codeplex.com/BranchingGuidance

 White Paper: Integrate Work Frequently with Visual Studio Team System 2008 6

see exactly which files were changed as part of the completion of a particular

feature or bug. Team Foundation Server ships with several different check-in

policies by default, and many more are available from the Team Foundation

Server developer community online (or you can write your own, of course).

Shelving

Shelving enables a developer to set aside a group of pending changes

temporarily in Team Foundation version control without checking them in.

This enables several scenarios that improve team productivity, such as

enabling a developer to set aside a long-running set of changes in order to

focus on a higher priority task, or helping a developer to share a set of

changes with another developer without checking them in, perhaps as part of

a review process. Shelving also protects work-in-progress code from

developer machine failures, and some teams require that all work-in-

progress code be shelved when developers leave for the day.

A set of files to be shelved together are called a shelveset. Likewise, when

checking in code, each set of files associated with a check-in is known as a

changeset. Shelving code is as easy as checking it in, and as Figure 1

shows, shelvesets can include comments, associated work items, and notes

just as changesets can.

Figure 1. Shelving is similar to checking in; changes are keyed to a Shelveset

name.

To learn more about Shelving in Team Foundation version control, see the

following Walkthrough: Shelving Source Control Items.

 White Paper: Integrate Work Frequently with Visual Studio Team System 2008 7

Get Latest on Checkout

The new “Get latest version of item on checkout” checkbox, which you’ll find

in the Options (as shown in Figure 2) dialog box in Visual Studio, will save

many developers from having to merge changes on files they are working on.

Without this checkbox enabled, editing a file will, by default, check out the file

but will not perform a get latest. Thus, a developer who does not regularly

perform a get latest before making edits to a file may find they are often

working on out-of-date copies of files, and must therefore merge their

changes when they perform a check-in. By enabling the “Get latest version of

item on check out” a get latest will be performed when the file is checked out,

ensuring that developers are always working with the latest checked-in

version of a file. This simple change can save developers hours of effort.

Figure 2. Enable “Get latest version of item on check out" in Visual Studio’s

Options dialog box.

Key Benefits of Team Foundation Version Control

A full-featured source control repository with integrated task management

and reporting enables development teams to collaborate effectively and

integrate their work frequently. Branching and shelving enable parallel

development, with fewer developers waiting on one another for shared files.

New features like Get latest version of item on check out reduce need to

merge changes and increase productivity by keeping everybody in sync with

the latest version of the project’s source code.

 White Paper: Integrate Work Frequently with Visual Studio Team System 2008 8

Team Build 2008 is a powerful build management tool that enables

automated, repeatable builds (and other tasks) across multiple machines.

Team Build uses MSBuild to define the tasks each build will perform, and

communicates between Team Foundation Server and Build Servers using

Web services. Builds are defined in Team Explorer and are then stored in

Team Foundation Server’s version control, making them available to the

entire team and enabling versioning and change tracking.

Continuous Integration

Team Build introduces several new features which enable continuous

integration, the practice of triggering a build with every committed change to

a project’s source files. Continuous integration provides several advantages,

including rapid detection of integration errors and unit test failures, and the

constant availability of a current, working build for quality assurance and

release purposes. Continuous integration requires two things to work

effectively:

 Builds must be automatically triggered after every check-in or group of
related check-ins.

 Team members must be notified when a build fails so action can be
taken to fix it as quickly as possible.

Continuous integration is a best practice for modern software development,

and recommended as part of many current software development

methodologies. Few projects would not be improved by the use of continuous

integration, and Team Build makes the process of setting up a build server

easy.

Microsoft designed two new features in Team Build to enable continuous

integration scenarios. Builds now support the concept of triggers, or events

which cause the build to automatically occur. By default, builds have no

triggers, but you can modify this to trigger the build with every check-in or on

a scheduled basis on certain days of the week (for a nightly/daily/weekly

build). You can optimize this further by limiting the number of builds per

check-in so that check-ins that occur while a build is in progress are batched

together into one new build, or limiting builds to only occur every N minutes

or more. Figure 3 shows the options for managing triggers in the Build

Definition dialog box.

TEAM BUILD

 White Paper: Integrate Work Frequently with Visual Studio Team System 2008 9

Figure 3. Triggers in Team Build 2008 allow for continuous integration.

Because continuous integration tends to lead to a much larger number of

builds, Microsoft also added a feature to help manage the artifacts generated

by each build. Figure 4 shows the Retention Policy menu of the Build

Definition, which is used to specify how many copies of the build should be

kept based on the outcome of the build.

Figure 4. Retention policies limit the number of builds stored on the server.

 White Paper: Integrate Work Frequently with Visual Studio Team System 2008 10

Notifications and Reports

To close the loop with continuous integration, you need a way to notify the

team when the build fails or is fixed. The Team Foundation Server Power

Tools – December 2007 Release includes a Build Notification Tool that runs

on users’ desktops as a system tray icon. You can configure it to show

notifications for builds started, queued, and/or finished for individual build

definitions within team projects. Figure 5 shows the configuration options for

the notification tool, and Figure 6 shows how the notifications appear in the

system tray area of a user’s desktop.

Figure 5. Configure notifications by choosing specific build definition, events,

and triggering users.

 White Paper: Integrate Work Frequently with Visual Studio Team System 2008 11

Figure 6. Build notifications appear above the system tray whenever monitored

events occur.

Once a problem is introduced into the project, everyone on the development

team is notified within moments. The developer responsible for the problem

(typically the last one to check something in) should immediately address the

issue and check in additional updates that will allow the build server to

successfully build the project. This minimizes the amount of time that the

automated build is broken, and ensures that bugs introduced are found and

fixed immediately. It is also a good idea for teams to strive never to break the

build on the build server, which can often be avoided by running tests locally

before checking in changes.

In addition to notifications, Team System includes rich reporting built on

Microsoft SQL Reporting Services. Interested parties can quickly view

information about recent builds and check-ins, or subscribe to periodic

reports covering information of interest to them. SQL Reporting Services

powers the reporting engine piece of Visual Studio Team System 2008. A

simple report listing builds with related build quality and test pass rate is just

one of nearly twenty reports available by default from a new project. Figure 7

shows some of the sample reports available from within Team Explorer for a

given team project.

 White Paper: Integrate Work Frequently with Visual Studio Team System 2008 12

Figure 7. Team Projects include many built-in reports, and additional ones can

be added as required.

Unit Tests and Code Analysis

Improving code quality is one of the key benefits of having automated,

repeatable builds. Two ways this can be achieved are the use of unit tests

that ensure code is doing what it is supposed to, and static code analysis that

ensures code is written according to specified conventions and best

practices. Using Team Build, developers can easily perform both of these

processes as part of a build definition so that they occur with each build.

Combined with continuous integration, this can greatly enhance code quality

by ensuring that failing unit tests are discovered immediately after code is

checked in.

Build Management

With Microsoft Team System, each variation of building a project is a

separate build definition. You create build definitions via Team Explorer and

store them in Team Foundation Server’s version control. Once created, any

user with the necessary privileges can access these builds from any

machine, enabling any member of the project team to initiate a build. The

results of each build are also recorded and included in various reports.

Further, you can run builds on multiple machines, enabling a single Team

Foundation Server to initiate builds on a number of servers running Team

Build at the same time.

 White Paper: Integrate Work Frequently with Visual Studio Team System 2008 13

Custom Build Tasks

Because Team System build definitions rely on MSBuild project files to

define the tasks they will perform, it is very easy to define custom build tasks.

Such tasks may not be related to the compilation, testing, and deployment of

code, necessarily, but can include anything for which an MSBuild task can be

written, which is pretty open. For example, you might consider building

custom build tasks to generate documentation from XML comments,

schedule long-running tasks, or perform live tests of a Web site’s uptime or a

database’s integrity. There’s virtually no limit to what you can define as a

build definition, and with triggers and scheduling, Team System can manage

custom tasks as easily as it can manage a project’s build process.

With custom build tasks, Team Build can be used as an extremely powerful

application server, running scheduled or triggered applications and workflows

in response to a variety of schedules or events.

Key Benefits of Team Build

A managed build process and frequent builds boost productivity in a team by

reducing the time between introduction of bugs and their discovery. Critical

information about the build and deployment process is protected in source

control and available to all members of the project team, eliminating the need

for dedicated build personnel. Notification and reporting tools ensure

information flows to project members who need it as quickly as possible.

 White Paper: Integrate Work Frequently with Visual Studio Team System 2008 14

The combination of a robust and scalable version control system with a

flexible and automated build system improves productivity and quality in

software development teams. By enabling developers to work together easily

while at the same time quickly detecting and communicating integration

issues, progress on the application can move forward at a much faster pace.

By reducing the feedback loop between integration of bugs and their

detection and correction, Visual Studio Team System 2008 Team Foundation

Server greatly improves the efficiency of software development teams.

Additional Resources

Microsoft Team Foundation Server Branching Guidance

Team Foundation Server Developer Center

Team Foundation Server 2008 Power Tools

What’s New in Team Foundation Server 2008?

Introduction to Team Build 2008 for Team Build 2005 Users

Team Foundation Server 2008: A basic guide to Team Build 2008

CONCLUSION

http://www.codeplex.com/BranchingGuidance
http://msdn2.microsoft.com/en-us/tfs2008/default.aspx
http://msdn2.microsoft.com/en-us/tfs2008/bb980963.aspx
http://blogs.msdn.com/bharry/archive/2007/08/08/final-tfs-2008-feature-list.aspx
http://weblogs.asp.net/dmckinstry/archive/2007/08/27/introduction-to-team-build-2008-for-team-build-2005-users.aspx
http://blogs.msdn.com/buckh/archive/2007/08/14/tfs-2008-a-basic-guide-to-team-build-2008.aspx

 White Paper: Integrate Work Frequently with Visual Studio Team System 2008 15

Steven A. Smith is a Microsoft Regional Director, ASP.NET MVP, and author

of several books on ASP.NET. He runs ASPAlliance.com, a software

development resource, and is CIO of Lake Quincy Media, LLC, which

operates the largest online .NET developer advertising network. You can

reach him via his blog: http://aspadvice.com/blogs/ssmith/.

This white paper was developed in partnership with A23 Consulting.

ABOUT THE AUTHOR

http://aspadvice.com/blogs/ssmith/

